Irrepresentability by multiple intersection, or why the interval number is unbounded

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval number ranking method considering multiple decision attitudes

Many interval number ranking methods cannot representthe different attitudes of decision makers with different riskappetites. Therefore, interval numbers are expressed in the RectangularCoordinate System (RCS). After mining the interval numbers in the RCS,the Symmetry Axis Compensation Factor, which is known as (lambda),was introduced, and the Equivalent Function o...

متن کامل

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

The Hadwiger Number of Jordan Regions is Unbounded

We show that for every n > 0 there is a planar topological disk A0 and n translates A1, A2, . . . , An of A0 such that the interiors of A0, . . . An are pairwise disjoint, but with each Ai touching A0 for 1 6 i 6 n.

متن کامل

Why Interval Arithmetic is so Useful

Interval arithmetic was introduced by Ramon Moore [Moo66] in the 1960s as an approach to bound rounding errors in mathematical computation. The theory of interval analysis emerged considering the computation of both the exact solution and the error term as a single entity, i.e. the interval. Though a simple idea, it is a very powerful technique with numerous applications in mathematics, compute...

متن کامل

Quadrature rules on unbounded interval

After some remarks on the convergence order of the classical gaussian formula for the numerical evaluation of integrals on unbounded interval, the authors develop a new quadrature rule for the approximation of such integrals of interest in the practical applications. The convergence of the proposed algorithm is considered and some numerical examples are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1985

ISSN: 0012-365X

DOI: 10.1016/0012-365x(85)90048-2